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ABSTRACT: It is proved that the Laurent expansion of the following Gauss hypergeometric

functions,

oFy (I + ag, In + be; Is + c5 2)

oIy (Il+a5,12+be;13+%+cs;z),

o Fy ([1+%+a€,12+b€;13+08;2’),

oy (11+%+a5,[2+b5;13+%+cs;z),
oIy (Il+%+a5,12+%+b5;13+%+cs;z),

where I, I, I3 are an arbitrary integer nonnegative numbers, a, b, ¢ are an arbitrary num-
bers and ¢ is an arbitrary small parameters, are expressible in terms of the harmonic
polylogarithms of Remiddi and Vermaseren with polynomial coefficients. An efficient algo-
rithm for the calculation of the higher-order coefficients of Laurent expansion is constructed.
Some particular cases of Gauss hypergeometric functions are also discussed.
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1. Introduction

One of the most powerful techniques for calculating Feynman diagrams is based on their
presentation in terms of hypergeometric functions. We will call this the hypergeometric
function representation of Feynman diagrams. Such a representation can be used for nu-
merical evaluation, construction of the asymptotic expansion, etc. One of the unsolved
problems in this program is obtaining the proper representation for a diagram with an
arbitrary number of legs and loops. Direct use of a- or Feynman parameters represen-
tations [[] is not very helpful in solving this problem. The Mellin-Barnes technique is
restricted to several topologies [ —[]. The negative dimension approach [f] has a similar
restriction [[]. The most investigated diagrams are the master integrals (typically, integrals
with the power of each propagator equal to unity). The differential and/or difference
equation [fJ] techniques are usually used to obtain such representations. The known cases
include the one-loop diagrams [0, [[]], two-loop propagator-type diagrams with special
mass and momentum values [[J], several three-loop bubble-type diagrams [fJ], three-loop
vertex-type diagrams [[[J], and four-loop bubble-type diagrams [[4]. For practical appli-
cation however, it is necessary to construct the of e-expansion (Laurent expansion) of
hypergeometric functions. There is some evidence that the multiple polylogarithms [[[§—
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are sufficient for parametrizing the coefficients of the e-expansion of some, but not all,!
hypergeometric functions [[L§.

In some particular cases, the result of the Laurent expansion can be written in terms
of simpler functions. In particular, at the present moment, it is commonly accepted [[[J]
that the generalized hypergeometric functions with an arbitrary set of integer parameters
can be presented in terms of harmonic polylogarithms [P(]. The idea of the proof is based
on the properties of nested sums [R1]: the analytical coefficients of the e-expansion of any
generalized hypergeometric function with integer parameters can be reduced to a set of
some basic harmonic series of the type

e}

2 .
=S80, — 1)+ Sq, (1 — 1), (1.2)
=17
where z is an arbitrary argument and S, (j) is an harmonic sum defined as S, (j) = {J:l k%

Series of this type are expressible in terms of the Remiddi-Vermaseren harmonic polyloga-
rithms.

However for hypergeometric functions with half-integer values of parameters, the new
type of sums, multiple (inverse) binomial sums 23, i, B, BJ] are generated:

S b be®) = Z W"_S (= 1)+ S0, (G = 1) (25 — 1)+ Sy, (2] — 1) .
Jj= !
J

(1.3)
For particular values of k, the sums ([[.) are called

0 generalized harmonic
k= 1 inverse binomial sums .
—1 binomial

At the present moment, there is no proof that any multiple (inverse) binomial sums
can be expressed in terms of harmonic polylogarithms only. This problem was investigated
in ref. [R3] for multiple inverse binomial sums up to weight 4. In ref. [P4], it was shown
that some of the multiple inverse binomial sums are not expressible in terms of harmonic
polylogarithms of simple argument. In ref. BJ], the results of ref. B3] were extended
on the case of special combinations of multiple binomial sums and multiple generalized
harmonic sums. However, the Laurent expansion of a hypergeometric function in general
contains combinations of multiple sums. These combinations may be expressed in terms
of harmonic polylogarithms. From this point of view, the construction of the analytical
coefficients of the e-expansion of hypergeometric functions can be done independently from

existing results for each individual multiple sum.?

We are thankful to S. Weinzierl for this information.
2We are indebted to A. Davydychev for discussion on this subject.



The simplest hypergeometric function is the Gauss hypergeometric function
o Fy(a,b;¢;2), RG—RY). It satisfies the second-order differential equation

dii <zd% +e— 1> w(z) = <zd% + a) <zd% + b> w(z) (1.4)

and admits the series representation

o0
oFi(a,b;c;z) = Z )i (b ,
(O)k k'

k=0

where (a)r = I'(a + k)/I'(a) is the Pochhammer symbol.
The primary aim of this paper is to prove the following:

Theorem 1. The all-order e-expansions of the Gauss hypergeometric functions

oy (Iy + ag, I + be; I3 + ce52) (1.6a)
o Fy (Il—i—aglg—i-belg—i- +egz2), ( )
oFy (I + 5 —i—aa Iy + be; I3+ ce;2) (1.6¢)
oF ) (I + 24 ae, I +be; I3 + 3 + ey 2) (1.6d)
oF 1 (I1+ 5 +as, b+ 4 +bes; I3+ & +ce52) (1.6e)

where {1} are integer numbers, a,b, ¢ are an arbitrary numbers, and € is an arbitrary small
parameter, are expressible in terms of Remiddi- Vermaseren harmonic polylogarithms with
rational coefficients.

2. All-order s-expansion

2.1 Non-zero values of the e-dependent part

It is well known that any Gauss hypergeometric function may be expressed as a linear
combination of two other hypergeometric functions with parameters differing from the
original ones by an integer [26 -R9, RF]. Such a representation will be called a reduction, and
the explicit algorithm will be called a reduction algorithm. Using the algorithm described
in ref. 5], the result of the reduction can be written as

d
P(a,b,c,z)aF1(a+ I1,b+ Iy;c+ Is; 2) = {Ql(a, b, c, Z)a + Q2(a, b, c, z)}gFl(a, b;c; 2)
(2.1)

where a,b,c, are any fixed numbers, P, Q1,2 are polynomial in parameters a,b,c and
argument z, and I, I», I3 any integer numbers.

All the hypergeometric functions ([[.6) listed in Theorem 1 can be reduced to functions
with Iy, Is, I3 equal to zero for half-integer values of parameters, and to unity for integer



ones. In this way, all the hypergeometric functions of Theorem 1 are expressible in terms
of the following five basic functions and their first derivatives:

oF1(are,a0e;1 4+ ce52),  oFi(a1e, ase; % + fe;2), (2.2a)
2F1(%+be, ag; 14-ce; 2), 2F1(%+be, ae; %—{—f&; z), 2F1(%+b15, %—Fer; %+f5; z). (2.2b)

It was shown in ref. [RH] that only the two hypergeometric functions (and their first deriva-
tive) of type (R.24) are algebraically independent The other three, (R.2H), are algebraically
expressible in terms of oF} (a1€,ase; 5 + fe;2). Consequently, in order to prove Theorem
1, it sufficient to show that the analytlcal coefficients of the e-expansion of the first two
hypergeometric functions (R.24) are expressible in terms of Remiddi-Vermaseren polyloga-
rithms.

2.1.1 Integer values of of e-independent parameters

Let us start from expansion of Gauss hypergeometric functions with integer values of
parameters, and consider the function 9Fj(aje,ase;1 + cg52). In ref. [, the all-order
e-expansions for this functions and its first derivative were constructed in terms of multiple
polylogarithms of one variable [[L6, [[7]. These multiple polylogarithms may be expressed
as iterated integrals ® and have the expansion

(2) Zm )
Biosn ()= 2 T a——— 2.6
n mi>mo >y >0 m11m22 e mnn

Similar results were also derived (without explicit form of coefficients) in ref. [[J] via nested
sums approach. We will follow the idea of ref. [B(].

The Gauss hypergeometric function o Fy(ai€, ase; 1+ ce; z) is the solution of the differ-
ential equation

a (zdiz + cg> w(z) = (Zd% + a15> (Zd% + CL2€> w(z) | (2.7)

3Recall that multiple polylogarithms can be expressed as iterated integrals of the form

. dt dt dt dt dt dt dt dt
Liky, o kon / ? o0 ey o o oToT (2.3)
N— —
kq—1 tlmes kn—1 times

where, by definition

/ dt dt oot / /tl dts ”/tk 2 dtg, 1 /tkrl dir, (2.4)
tki—1 Jo 11—t

k1—1 tlmes

The integral (E) is an iterated Chen integral [@ (see also [@]) w.r.t. the two differential forms wo = dz/z
and w1 = 1"l_zz, so that

z
Lig,, ok, (2) = / Wiy by (2.5)
0



with boundary conditions w(0) = 1 and Zd%w(z)‘z:o = 0. Eq. (R.7) is valid in each order
of €, so that in terms of coefficients functions wy(z) defined as

z) = io: wy(2)e”, (2.8)
k=0
it can be written
(1-— Z)E <z£> wi(z) = <a1 +ag — E) < jz) wi—1(2) + araswi_o(z) (2.9)

for k > 0 with

wo(z) =1, (2.10a)
wi(z) =0, kE <0. (2.10Db)
The boundary conditions for the coefficient functions are
wi(0) =0, kE>1, (2.11a)
zd%wk(z)‘zzo =0, kE>0. (2.11b)

Let us introduce a new function p(z) defined by*

p(2) = }j% , (2.12)

where the coefficient functions satisfy

pi(2) = 2 (2) (2.13)

dz
The boundary conditions for these new functions follow from eq. (R.11)):
pe(0) =0, E>0. (2.14)

Eq. (:9) can be rewritten as a system of two first-order differential equations:

(1- Z)dilzpz‘(z) = (a1+a2——> pi—1(2)+aiaw;—s(2) ,
zdizwi(z) = pi(2) . (2.15)

The solution of this system can be presented in an iterated form:

© dt ,
Z(Z) = a1+a2_ —Pz 1 +a1a2 Wi 2(t)_cwifl(z) , 121,
1—t o 1—t

( 14+ aie, 1+aze
2F1
24ce

1+CEOO Pk+2
() - e el

k=0



Taking into account that wo(z) = 1 and pp(z) = 0 (the e-expansion of p(z) begins with the
term linear in €), we obtain the first few coefficients,

oi(z) = wi(z) =0, (2.17a)

2C) s =15, 2.17)

ajaz

wa(2) _ o (2) = H(0,1;2) , (2,170

a1a2

p3(2) = %l In?(1 — z) — cLiy (2) = v.H(1,1;2)—cH(0,1; 2) , (2.17d)

a1a9 2

U;s(az) = 7eS1,2(2) —cLiz (2) = v.H(0,1,1;2)—cH(0,0,1; 2) , (2.17¢)
142

where we have defined v, = a1 +as —c¢, and Li, (2) and S, 5(2) are the classical and Nielsen
polylogarithms [B3, B4], respectively:

Sa,b(z) =

a+b— : a-1 b
(—1) +b 1/d§ In® "¢ In”(1-2¢) , Sai1(z) =Ligt (2).

(a—1)!'0! '3
0
The functions H (ff, z) are the Remiddi-Vermaseren harmonic polylogarithms [R(], and A
is a multiple index including only entries 0 and 1.
From the representation (R.16) and result for the first few coefficients (R.17) we may
derive the following observations:

Corollary 1. The all-order e-expansion of the function o Fy(a1e, aze; 1+ce; z) may be writ-
ten in terms of harmonic polylogarithms H 7(z) only, where the multiple index A includes

only the values 0 and 1.

Corollary 2. The analytical coefficient of €* in the expansion of 2Fi(aie,ase;1 + ce; 2)
includes only functions of weight k with numerical coefficients.

Corollary 3. The non-constant terms of the e-expansion of oFi(a1e,ase;1 + ce;2) are

proportional to the product ajas in any order of €.

The first and the last statement follows from the representation® (R.16)), the explicit
value of coefficients functions wy(z), k = 0,1,2 (eqs. (R.17)), and definition of har-
monic polylogarithms [R0]. The second statement follows from the form of the solution
of eq. (.14).

The relation between harmonic polylogarithms H (z), with multiple index A including
only 0 and 1, and multiple polylogarithms of one variable (eq. P.f)) is well known [R1] and
follows from the proper definition (see section 2 in ref. 2(]):

Lig, ko ko (2) = H(0,0,---,0,1,0,0,---,0,1,---0,0,---,0,1; 2) . (2.18)

N~ N~

k1—1 times  ko.—1 times kn—1 times

5The Corollary 3 follows also from general properties of hypergeometric functions.



By continued iterations of eq. (R.16) and eq. (R.17), we have reproduced all coefficients
of the e-expansion of the Gauss hypergeometric function presented in eq. (4.7) of R]. For
the coefficients functions p4(z),ws(z), and ps(z), we find a more compact form. We also

obtain the higher-order terms ws(z) and pg(2) of the e-expansion. The results are®

'24(;) = —%73 ln3(1—z)+(c%—a1a2) In(1—2)Liy (z)+c2L13 (2)+(cye—2a1a2) S12(2)
102
1

?ZA;—E;) = ’Liy (2) — 3 (cYe — araz) [Lig (2)]° +72S13(2) + (ee — 2a1a2) So2(2) ,  (2.19)
P5(Z)_13 1 — 2)— 3L )
—a1a2 = 24 In* (1 —2z)—c’Liy (2) —¢v2S1,3(2)

—c(cye—ara2) In(1 — z)Liz (2) —c (¢, —2a1a2) S22(2)

1

—e (¢ye—ajaz) In(1 — z) [5 In(1 — z)Lis (2) + SLQ(Z)] , (2.20)
U;?Z) = ¥381.4(2) — ALis (2) — ev2S23(2) — ¢ (¢ve — 2a1a2) S3.2(2)

+ (e — ara2) [%Liz (2) S1,2(2) — Ve Fi(2) — cFa(z) | (2.21)
'OG(Z):—'y 1 In®(1 — 2) + ¢*Lis (2) + ®42S2.3(2)
a1az €120 b 23

1
+673 (cye — araz)

In®(1 — 2)Lig (2) + 3In*(1 — 2)S1.2(2) + 61n(1 — z)Sl,g(z)]

—}—%c (e —ajaz) In(1 — 2) l% In(1 — z)Li3 (z) + 2cLiy (z)]
—(c—a1)(c —az) (cye — 2a1a2) In(1 — 2)S22(2)

+ajas (7. — araz) E In(1 — 2) [Lig (2)]* — 2Lig (2) S1.2(2) + 2F1(2)

+ (¢ye — 2a1a2) [%28174(2) + ¢S5 (z)] , (2.22)
where we have introduced two new functions:

/ —ln (1 —=z)Lig (z) , (2.23)
Fy(2) —/0 —ln(l—x)ng( ) . (2.24)

x

5The FORM [@] representation of these expressions can be extracted from ref. @]



There is an algebraic relation” between these two functions:
F5(1 —z) = Fi(2) — 2In 2S; 3(2) + 2S2.3(2) — Liz (2) S12(2) —InzIn(1 — 2)S1 2()
—% In3(1 — 2)In? 2 — %lnzln2(1 — z)Lis (2) + %CQ In?(1 - 2)In z
—(251,2(2) — GsLiz (1 = 2) — G5, (2.25)

where
Fi(1) = 2¢3¢2 — (5 ~ 2.9176809 - - - .

In this way, at the order of weight 5, one new function,® Fj, which is not expressible
in terms of Nielsen polylogarithms, is generated by the Laurent expansion of a Gauss
hypergeometric function with integer values of parameters. In general, the explicit form of
this function is not uniquely determined, and the result may be presented in another form

by using a different subset of harmonic polylogarithms.

2.1.2 Half-integer values of of cs-independent parameters

Let us apply a similar analysis for the second basis hypergeometric function

ai€, agc
2F1 z . (226)
( 2 tfe )
In this case, the differential equation has the form
d d 1 d d
— = = = z— — 2.2
7 (Zdz 5+ fa) w(z) <Zdz + a1€> <Zdz + a2€> w(z) , (2.27)

with the same boundary conditions w(0) = 1 and zd%w(z)‘zzo = 0. Using the e-expanded
form of the solution, and noting that eq. (B.§), and in fact, eq. (R.27) is valid at each order
of the e-expansion, we may rewrite eq. (2:27) as

1
[(1 - Z)diz - %] <Zdiz> wi(z) = [(al—l—@)—g} (z%) wi—1(z)+araw;_2(z) .(2.28)
Let us introduce the new variable y such that,’
1—4/% 2 2
z—1 1-— 1 d 1-— d
y=—-> - z:—&, 1—z:ﬂ, z—:——yy—,(2.29)
14,/ 4y 4y dz 1+y”dy
and define a set of a new functions p;(y) so that!?
d 1—-y d 1—y
2owi2) ( 1+yydy>w(y) "W (2.30)

"We are indebted to A. Davydychev for this relation.

8Compare with results of [@]

9The form of this variable follows from the analysis performed in refs. [E, @, @]
1%We may note that

o 1+ aie, 14+aze
2141 %—f—fE

) _lt2fel-yN- |:pk+2(y):|6k
22 1+y=| aa '



and, as in the previous case,

o) = =) = Y pr(w)e" (2:31)
k=0

In terms of the new variable y, eq. (.2§) can be written as system of two first order

differential equations:

d 1—y 1 1
iy = - 2f [ —— — ) .
ydypz(y) (a1+az2) - 1(y) +2f (1 Sy 1+y> pi—1(y)+arazwi—2(y) ,
d
— = — . 2.32
Z/dyivk(y) Px(Y) ( )

The solution of these differential equations for functions w;(y) and p;(y) has the form

i) = [t |2 = 2erbar= )] iea(©) - (arban) s () -wia (1)

Y dt )
+ayaz 7wi72(t) ;o o12>21,
1
Ydt .
wi(y) = —/1 TPi(t) , 1>1. (2.33)

The point z = 0 transforms to the point y = 1 under the transformation (R.29), so that

the boundary conditions are

wk(l) =
pr(1)

The first several coefficients of the e-expansion can be calculated quite easily by using
wo(y) =1 and po(y) = 0:

0,k>1
’ ’ 2.34
0,k>0. (2:34)

AVARAYS

p1(y) = wi(y) =0, (2.35a)
P20) _ 1) = H(0:y) | (2.35D)
ai1an

wa(y) _ _11n2(y) = —H(0,0;y) . (2.35¢)
a1a9 2

Continuing these iterations, we may reproduce the coefficients of the e-expansion of the
Gauss hypergeometric function (R.2) presented in eq. (4.2) of ref. [R5]. Since the length of
the expressions obtained for the coefficient functions p3(y),ws(y), p4(v), ws(y), p5(y), ws(y)
is similar to those published in eq. (4.1) of ref. [R5], we don’t reproduce them here.'!
The higher order terms of e-expansion are relatively lengthy and therefore will also not
be presented here. Unfortunately, as in the previous case, we are unable to calculate the
k-coeflicient of e-expansion without knowledge of previous ones.

From representation (.3) we deduce the following result:

HM.Y.K. thanks to M. Rogal for pointing out a mistake in eq. (4.1) of ref. [@] In the £? term, the
coefficient should be “—2(3f — a1 — a2)” instead of “—2(3f — 2a1 — 2a2)”.



Corollary 4. The all-order e-expansion of function (£.28) can be written in terms of har-
monic polylogarithms H z(y) of variable y defined in [©-29) and multiple index A with
entries taking values 0, 1 and —1.

This statement follows from the representation (R.33), the values of coefficients func-
tions wy(2), k = 0, 1,2 (see eqs. (R.11)), (B.17)), properties of harmonic polylogarithms, and
the relation between powers of logarithms and harmonic polylogarithms. Also, Corollary
2 and Corollary 3 are valid for the hypergeometric function (P.26).

We would like to mention that, in contrast to the eq. (.14), eq. (B-33) contains a
new type of function, coming from the integral [ f(¢)dt/(1+t). Another difference is that
the first nontrivial coefficient function, pa(y), is equal to In(y), instead of In(1 — z), as it
was in the previous case. It was shown in ref. [R0] that terms containing the logarithmic
singularities can be explicitly factorised (see eqs. (21)-(22) in ref. [20]), so that the coefficient
functions, wy(y) and pi(y) from eq. (R.33), have the form

j=0
k—1 ‘
puly) = Y (3,5, 0" (y) [Ligs) () — Ligs) (1)] (2.36)
j:O S S
where ¢(§8,5,k) and ¢(5,0,k) are numerical coefficients, § and & are multi-index, § =
(81, sp)and & = (o1, -+ ,04), ok belongs to the set of the square roots of unity, o, = +1,
and Li(q ) (y) is a coloured multiple polylogarithm of one variable @fﬁ], defined as
mi Mn
. 0'1 .. 0'
Blomea) ()= 2, e (237

mi1>ma > mp >0

It has an iterated integral representation w.r.t. three differential forms,

d

wo = _y7 g = 07
Y

d

wy = 25— 41, (2.38)

1—-o0y
so that,
! 1 1 1
Li(%%...,%) (y) :/0 Wl W W2 Weyos W Woyageoy s a,% =1. (2.39)
81589, Sk

The values of coloured polylogarithms of unit argument were studied in refs. [B6, B7].

2.2 Zero-values of the e-dependent part of upper parameters

In the case when one of the upper parameter of the Gauss hypergeometric function is a
positive integer, the result of the reduction has the simpler form (compare with eq. (B.1)):

P(b,c,z)2F1(11,b+ I;c+ I35 2) = Q1(b, ¢, 2)2F1(1,b; ¢; 2) + Q2(b, ¢, 2) (2.40)

,10,



where b, ¢, are any fixed numbers, P, ()1, Q2 are polynomial in parameters b, c and argument
z, and I, I, I3 are any integers.'? In this case, it is enough to consider the following two
basis functions: 9 F (1,14 aeg;24cg; z) and 2 F1 (1, 14 ag; %—l—f&; z). The e-expansion of this
function can be derived from the proper solution given by eq. (R.17) or eq. (R.35), using

the relations
1,1 1 d 1 >
L Fy , L4+aqe 2| = lim + ce LR ai€, aze 2| = +C€Z Pry2(2) ok
a1—0 a1a9e? dz 14-ce z araz |, _g

2+ fe prd
(2.41)
and
1,1 14+2fe d 1+2fe —
2F1< ) +age z):lim + f€2_2F1<ai€,a2€ z>: + er[le—Q(y) ]€k7
s+fe a1—0 2a1a9e? dz 5+fe 2z — | w2 [,
(2.42)

where we have used the differential relation

d a,b ab 1+a,1+0b
. F 7 —— F 7
d221<cz> 021< 1+c ‘Z>’
and the brackets mean that in the proper solution, we can put a; = 0. The functions pj, are

given by eq. (.17) and eq. (2.35), correspondingly. Due to Corollary 3, the limit a; — 0

must exist.

The case when both upper parameters are integers may be handled in a similar manner.
Theorem 1 is thus proved. W

3. Some particular cases

3.1 The generalized log-sine functions and their generalization

For the case 0 < z < 1 the variable y defined in (R.29) belongs to a complex unit circle, y =
exp(i6). In this case, the harmonic polylogarithms can be split into real and imaginary parts
(see the discussion in appendix A of ref. [P4]), as in the case of classical polylogarithms. [B]
Let us introduce the trigonometric parametrization z = sin’ g. In this case, the solution of
the proper differential equations (P.16) and (2.33) can be written in the form

0 a0 @ 0 on?
pi(0) = (a1+a2—c)/ d¢m—zpi—1(¢)+a1a2/ d¢m—iwi—2(¢)—cwi—1(9) , i2>1,
0 COS§ 0 COS§
0 COS% i
wi(6) = /0 @5 En(@), i1, (3.1)
and
o sin% o COS%5 o
pi(0) = (a1+a2—f)/0 d¢cos%5pz‘—1(¢)—f/0 d¢sin%pi—1(¢)+a1az/0 dow;—2(9) ,
0
wi(h) = /0 dopi(d), i>1, (3.2)

12The proper algebraic relations for the reduction are given in ref. [@]
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respectively. In the first case, the solutions of the system of equations (B.1]) are harmonic
polylogarithms with argument equal to sin? g. In the second case, the result contains
the generalized log-sine functions B3, B§—[i0] and some of their generalizations studied in

ref. )] (see also ref. [iF]). For illustration, we will present a first several terms of the

e-expansion!? (see the proper relations, table I of appendix C in ref. [BJ]):
1 1 142
P +C§1€, +aze sin28 | = ( + fe)
5+ fe sin

X (9 + 25{7f (Lsg (1—6)—6Lg) — f (Lsa (9)+950)}

+52{2f’72fL53 (0)+27yfy2Ls3 (m — 0)— fvsLss (20)
+4f7y [Lsz (0) Lg—Lsy (m—0) lg+0Lglg] + 4f*Lsy (0) lg — 477Lsa (m — ) Ly

1
+2f2(913 + 2’)’?9[13 + 6@1@293 + ")/f")/gfﬂ'CQ}

+53{§72f [(al + ag)yyLsy (m —60) + f2L84 (0) — 3fysLsca3 (9)] — %fzfny&; (20)

ayaz [2fCL (8) — 2v;Cly (1 — 8) — fCl (8) 8 — 7¢Cls (r — 6) 6]
+2[flg + vy Lo] [fysLs3 (20) — 2vpy2yLsg (1 — 0) — 2 fy25Ls3 (0)]
+2[flo + v Lo]” [272¢Lso (7 — ) — fLss (20)] + a1a2y2,6°Lss (1 — 6)

1 1 4
—§a1a2fL82 (20) 6 — §a1a293 [flo+~¢Le|— 39 [flo +’YfL9]3 —2v¢y2rmC2 [flo+yLe)

+araz(3ar + 3az — 7f)0C; — 2(a1 + a2)7f’72f7TC3} + 0(64)> (3.3)
and
aie,az€ | . 1
o Fy < % b e sin? g) =1+ ajage? (592
—|—6{2fL52 (0) 0—2v¢Lsy (m — 0) 0+4~¢Cls (m — 8)+4fCl3 (0)+(3a1 —|—3a2—7f)C3}
1
—|—62{27f72 sLss (1 — 0) 0— fy;Lss (20) 0+2fy27Ls3 (0) 9+ﬂa1a294
—2[fLsz (0) —yLs2 (w7 — 0)]* + 7f72f97TC2} + 0(53)> ; (3.4)
where

0 0
Lyp=1In <2cos—> , lp=1In (28in—> ,
2 2

13The FORM representation of these expressions can be extracted from @]
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the generalized log-sine function is defined as

¢

0
k
Ls\" (8) = / do ¢ 2sin 7|, Ls; (0) =Ls\” (0) , (3.5)
0

and we use the notation Lsco 3(0) for the special combination (see eq. (2.18) in ref. [RJ])

Lsco3(0) = 15Lss (20) — $Ls4 (0) + 2Tiy (tan g) —2In (tan §) Tis (tan )
+ In? (tan ) Tip (tan ) — %Gln?’ (tan 5) , (3.6)

where the functions Tiy (z) are defined as [BJ

Tiy (2) = Im [Liy (iz)] = %[Lm (iz) —LiN(—iz)} . Tiy (2 /— Tin_1 (z) .

(3.7)
These functions receive special interest in physics through their role in the so-called
“single-scale” diagrams, which depend only on one massive scale parameter. The massless
propagator-type diagrams, bubble-type diagrams and propagator-type diagrams on mass
shell all belong to this class. In particular, the single-scale diagrams with two massive
particle cuts correspond to hypergeometric functions with value of argument equal to z =
1/4. [, B, B In this case, the value of the conformal variable y is equal to the primitive
“sixth root of unity”, y = exp ( ) In contrast to the case in multiple polylogarithms (P.6)
of the primitive sixth root of unity studied in ref. [i4] and the more complicated case in
coloured polylogarithms of the sixth root of unity studied by Broadhurst in ref. [[d], the
physically interesting case corresponds to coloured polylogarithms of square root (R.39)
(harmonic polylogarithms) with argument equal to primitive sixth root of unity. In this
case, some new transcendental constants, in addition to studied in ref. [i4] will be generated.
The set of independent constants up to weight 5 was constructed in refs. [B8, f, [H].

3.2 Special cases: all-order c-expansion in terms of Nielsen polylogarithms

One advantage of a trigonometric representation used in the previous section is the theorem
proved in ref. [f] (see also ref. [[I]]), that any generalized log-sine function (B.5) is expressible
in term of Nielsen polylogarithms [@] only. Using this theorem, it was shown in ref. , @]
that for the Gauss hypergeometric function

1,14ae
F;
2 1( %—{—b&

sin? g) , (3.8)

the Laurent expansion is expressible in terms of only Nielsen polylogarithms in the three
cases (i) b = 0, (ii) b = a, (iii) a = 2b. Using the reduction algorithm [B§], we can claim that
the Laurent expansions of the following functions are also expressible in terms of Nielsen

I, I
SiDQg s 2F1 1 L 2+1€
SREERES

polylogarithms only:

I, I I, 1
JFy 11, 2+¢€ sin2g - 11, 2+¢
§+I3 §+I3—|-€

sin? g) ,(3.9)
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a I I I I I I Ii+e I +e I +2¢

bl 3+L |i+hte|s+h—c|3+hte| s+ |3+h+e| 4+ |d+Dh+e| s+1+e
c|i+Iz+e| 3413 |3+D3+e| Is+e |Iy+e| I3+2e |Li+1+e|Li+1+e|[+1+2¢

Table 1:

where I, Iy and I3 are integers.

It is interesting to analyze this solution from the point of view of eq. (B.2). Due to
fact that a; = 0, the last term in eq. (B.2) is identically equal to zero. In case (i), only
the first term survives, with integration kernel having the form dIn(cos %5) In case (ii),
only the second term survives, and the integration kernel has the form dIn(sin %) In case
(iii), the first and second terms can be reduced to the second case of a double argument.
The statement about expressibility of inverse binomial sums in terms of log-sine function,
proved in ref. [R3 (see also ref. [4]) applies to all three of these cases.

We can extend the class of Gauss functions whose e-expansions are expressible in terms
of only Nielsen polylogarithms by using algebraic relations'* between of the fractional-linear
arguments (see section 3 in ref. [Rg]). The cases which may be expressed in this manner are
summarized in table I, where a, b, ¢ are parameters of the Gauss hypergeometric functions
oFi(a,b;c;z) and Iy, Iy and I3 are integer:

The results of this section can be formulated as follows:

Proposition 1. All cases of Gauss hypergeometric functions with half-integer values of
parameters for which the all-order e-expansion is expressible in terms of only Nielsen poly-
logarithms are described in eq. (3.9) or the parameters shown in table I.

4. Conclusions

The main result of this paper is the proof of Theorem 1, as stated also in the abstract. The
proof includes two steps: (i) the algebraic reduction of Gauss hypergeometric functions of
the type in Theorem 1 to basic functions and (ii) the iterative algorithms for calculating
the analytical coefficients of the e-expansion of basic hypergeometric functions.

In implementing step (i), the algebraic relations between basis functions with half-
integer values of parameters reduce all of the cases to the one basic function of type (.2d)
and its first derivative (see details in ref. [25]). In step (ii), the algorithm is constructed for
integer values of parameters in eq. (2.16)) and for basis Gauss hypergeometric functions with
half-integer values of parameters in eq. (R.33). This allows us to calculate the coefficients
directly, without reference to multiple sums.

It is interesting to note that the Laurent expansions of the Gauss hypergeometric func-
tions with integer values of parameters are expressible in terms of multiple polylogarithms
of one variable (see eq. (2.)) or the Remiddi-Vermaseren harmonic polylogarithms with
multiple index including only values 0 and 1. The argument of the resulting functions coin-
cides with the original variable of the hypergeometric function. For Gauss hypergeometric

1 This can also be derived via the integral representation.
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functions with half-integer values of parameters, the coefficients of the e-expansion produce
the full set of harmonic polylogarithms, or coloured multiple polylogarithms of one variable
(see eq. (-37)). These functions depend on a new variable, related to the original variable
by conformal transformation (see ref. [2]).

For special values of the argument of the hypergeometric function, z < 1, the coloured
multiple polylogarithms of one variable may be split into real and imaginary parts. This
case has been discussed in section B.I. It was shown that the physically interesting case,
representing single-scale diagrams with with two massive particle cuts, corresponds to
coloured polylogarithms (R.39) with argument equal to a primitive “sixth root of unity”,
Yy = exp (z%) This gives an explanation of the proper “basis of transcendental constants”

constructed in refs. [Bg] and [{], and its difference from the proper basis of David Broad-
hurst [[Ld].

In the section B.2, the subset of Gauss hypergeometric function is analyzed, showing
that the all-order e-expansion is expressible in terms of Nielsen polylogarithms only. In par-
ticular, we have formulated the proposition that the only Gauss hypergeometric functions
with half-integer values of parameters for which the all-order e-expansion is expressible in
terms of Nielsen polylogarithms only belong to one of the functions described in (B.9) or
in table I.

In appendix [A], we discuss the construction of the all-order Laurent expansion of the

(]

Gauss hypergeometric function (R.2() around z = 1.
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A. The Laurent expansion of Gauss hypergeometric functions with half-
integer values of parameters around z =1

The identities between harmonic polylogarithms (R.§) under the action of the group of
fractional-linear transformation of the argument,

1
z—1—2z, -, z2,
z

was considered in ref. (see also ref. [if]). It was shown [R{] that the full set of Remiddi-
Vermaseren functions is invariant with respect to transformations
1 1—-2

z— -,

2 142z
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In this appendix, we wish to show that the coefficient functions wg(y) and pg(y) entering in
the Laurent expansion of the hypergeometric function (R.24) satisfy to some identities with
respect to the argument transformation z — 1—z. The derivation is trivial if we recall that
the all-order Laurent expansion of the hypergeometric function (R.26) can be written in
terms of coloured polylogarithms of argument y. Under the transformation z — 1 — z, the
conformal variable simple changes its sign, y =— —y. The full set of Remiddi-Vermaseren
functions is invariant (up to the addition of a constant imaginary part) with respect to
changing of the sign of this variable. Consequently, the coefficient functions wg(y) and
pi(y) should be related to wi(—y) and pi(—y).

Let us present the explicit relations. Using the Kummer’s relations between hyperge-

ometric functions of arguments z and 1 — z, we obtain

2F1 (ale,age 1 —Z)

T+ fe
B Z/2+(f-a1—az)e (%-l-f&) r (%4‘(@1 +az — f)f?) i —Qa1€, —ag€
DR T (1+a1e) T (1+aze) dz 2\ L (f—ar—ag)e|”
F(%—i—f&)l“(%—i—(f_al —a2)€) a1€, age B (A1)
L' (3+(f—a)e) T (3+(f — a)e) . T4+(a1+a2— f)e ' '

The all-order e-expansion for the hypergeometric functions entering in r.h.s. of this relation

is constructed in section R.1.J. Let us apply the same technique for constructing the
Laurent expansion of the hypergeometric function on the 1.h.s. In accordance with standard
procedure (see ref. [B§)), let us introduce a new variable, Z = 1 — 2, so that the the
differential equation around Z = 0 has the form

diZ (ZdiZ _ % b (ar+as— f)s> w(Z) = <Zdiz + a15> (Zdiz + a25> w(Z), (A.2)

This equation is equivalent to eq. (2.27) with the proper change of variable and one of the
parameters,

(2, f) — (Z,a1 + a2 — f) ,
so that we can use the results of section with the proper change of notations. In
particular, the solutions of the differential equations for the functions p;(Z) and w;(Z)
have the form

pi(Y) = /IY dt [2(a1+a2—f) : .

T 21| PO — (artaz) wioa (V) —wia (1))

Y
+a1a2/ %wz;z(f) , =21,
1
Y
dt
U)Z(Y) = —/1 ?pi(t) , 1>1. (A3)

where new variable Y is defined as
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and y is defined by eq. (R.29). In this way, both parts of relation ([A.d]) are expressible in
terms of coloured polylogarithms depending on the arguments y (r.h.s.) and —y (Lh.s.).

We expect that relations following from eq. (JA.]) may be useful in obtaining some dual

relations for coloured polylogarithms (see ref. [Lf, [[4, [4]), and in the obtaining algebraic

relations between coloured polylogarithms of the primitive “sixth root of unity”, as in case

of multiple zeta-values [7]. At the present moment, we are not ready to discuss these

relations.
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